走向更安全的高速公路工作区:使用改进的安全势场和机器学习技术对碰撞风险的实证分析

作者: 时间:2023-10-31 点击数:

Bo Wang, Tianyi Chen, Chi Zhang, Yiik Diew Wong, Hong Zhang, Yunhao Zhou



    Due to complex traffic conditions, transition areas in highway work zones are associated with a higher crash risk than other highway areas. Understanding risk-contributing features in transition areas is essential for ensuring traffic safety on highways. However, conventional surrogate safety measures (SSMs) are quite limited in identifying the crash risk in transition areas due to the complex traffic environment. To this end, this study proposes an improved safety potential field, named the Work-Zone Crash Risk Field (WCRF). The WCRF force can be used to measure the crash risk of individual vehicles that enter a work zone considering the influence of multiple features, upon which the overall crash risk of the road segment in a specific time window can be estimated. With the overall crash risk used as a label, the time-window-based traffic data are used to train and validate an eXtreme Gradient Boosting (XGBoost) classifier, and the Shapley Additive Explanations (SHAP) method is integrated with the XGBoost classifier to identify the key risk-contributing traffic features. To assess the proposed approach, a case study is conducted using real-time vehicle trajectory data collected in two work zones along a highway in China. The results demonstrate that the WCRF-based SSM outperforms conventional SSMs in identifying crash risks in work zone transition areas on highways. In addition, we perform lane-based analysis regarding the impact of setting up work zones on highway safety and investigate the heterogeneity in risk-contributing features across different work zones. Several interesting findings from the analysis are reported in this paper. Compared to existing SSMs, the WCRF-based SSM offers a more practical and comprehensive way to describe the crash risk in work zones. The approach using the developed WCRF technique offers improved capabilities in identifying key risk-contributing features, which is expected to facilitate the development of safety management strategies for work zones.

Key words:Work zone safety,Real-time trajectory data,Improved crash risk field,Machine learning,Key risk-contributing features

DOI:https://doi.org/10.1016/j.aap.2023.107361


Copyright© 2019 广西中国-东盟综合交通国际联合重点实验室  地址:广西南宁市龙亭路8号广西中国-东盟综合交通国际联合重点实验室大楼  电话:0771-5900869 邮编:530200  桂ICP 备11008250号