电池电动汽车实际能耗的影响因素研究

作者: 时间:2023-11-30 点击数:

Kittitat Janpoom, Pana Suttakul, Witsarut Achariyaviriya, Thongchai Fongsamootr, Tossapon Katongtung, Nakorn Tippayawong



    The transportation industry is undergoing a major shift towards electrification to mitigate carbon emissions and decrease reliance on fossil fuels in response to global climate change and greenhouse gas concerns. Recently, battery electric vehicles (BEVs) have made significant progress and are becoming a more viable option for achieving zero-emission transportation. The aim of this study is to investigate the energy consumption patterns of BEVs operating in real-world driving scenarios encompassing various route conditions. The vehicle sensor data employed in this study was acquired through onboard diagnostic devices that directly gathered raw data and subsequently transmitted it to mobile applications. Various significant factors, such as payload, road slope level, speed range, acceleration, and loads of heating, ventilation, and air conditioning, are considered as variables influencing energy consumption. By utilizing the large amount of data collected, machine learning (ML) techniques were applied to develop a predictive model of energy consumption and identify variables that influence energy consumption. The outcomes of this study hold the potential to offer guidance to transportation policymakers and furnish valuable insights for prospective buyers considering BEVs. Furthermore, the application of ML in the development of a predictive model demonstrated efficacy and exhibits promising potential for wider-ranging applications.

Key words: Real-world drivingEnergy consumptionBattery electric vehicleMachine learningParameter analysis, Clean energy

DOI: https://doi.org/10.1016/j.egyr.2023.10.012

Date:2023.11


Copyright© 2019 广西中国-东盟综合交通国际联合重点实验室  地址:广西南宁市龙亭路8号广西中国-东盟综合交通国际联合重点实验室大楼  电话:0771-5900869 邮编:530200  桂ICP 备11008250号