智能城市:使用机器学习技术的基于融合的车载网络智能交通拥堵控制系统

作者: 时间:2023-09-30 点击数:

Muhammad Saleem, Sagheer Abbas, Taher M. Ghazal, Muhammad Adnan Khan, Nizar Sahawneh, Munir Ahmad



    Smart cities have been developed over the past decade, and reducing traffic congestion has been the top concern in smart city development. Short delays in communication between vehicles and Roadside Units (RSUs), smooth traffic flow, and road safety are the key challenges of Intelligent Transportation Systems (ITSs). The rapid upsurge in the number of road vehicles has increased traffic congestion and the number of road accidents. To fix this issue, Vehicular Networks (VNs) have developed many new ideas, including vehicular communications, navigation, and traffic control. Machine Learning (ML) is an efficient approach to finding hidden insights into ITS without being programmed explicitly by learning from data. This research proposed a fusion-based intelligent traffic congestion control system for VNs (FITCCS-VN) using ML techniques that collect traffic data and route traffic on available routes to alleviate traffic congestion in smart cities. The proposed system provides innovative services to the drivers that enable a view of traffic flow and the volume of vehicles available on the road remotely, intending to avoid traffic jams. The proposed model improves traffic flow and decreases congestion. The proposed system provides an accuracy of 95% and a miss rate of 5%, which is better than previous approaches.

Key words:Vehicular networks;Smart city;Machine learning;Fusion

DOI:https://doi.org/10.1016/j.eij.2022.03.003

Date:2022-9


Copyright© 2019 广西中国-东盟综合交通国际联合重点实验室  地址:广西南宁市龙亭路8号广西中国-东盟综合交通国际联合重点实验室大楼  电话:0771-5900869 邮编:530200  桂ICP 备11008250号